

Daniel A Cuevas¹, Taylor G O'Connell², Blaire Robinson², Tucker Lopez³, Kristen Aguinaldo³, Rebecca de Wardt³, Rhaya Alkafaji³, Thiago Bruce³, Elizabeth Dinsdale³, and Robert A Edwards^{1,2,4}

Introduction

Genomic data has become exponentially inexpensive to generate and increasingly accessible. Limitations with traditional homology-based bioinformatics algorithms often identify in gaps in our knowledge. Genome-scale metabolic models offer rapid analysis and a unique perspective to genome to its phenome. Can we exploit bacterial metabolic networks to fill these genomic gaps?

PyFBA Workflow

Acknowledgements & Funding

From DNA to FBA: how to build your own genome-scale metabolic model

¹Computational Science Research Center, ²Biological and Medical Informatics Research Center, ³Department of Biology, ⁴Department of Computer Science, San Diego State University, CA

MCB-1330800 DUE-1323809

	Reactions>						
— Compounds	-1	0	1	0	1	0	0
	1	-2	0	-1	0	0	0
	0	0	0	2	0	0	0
	-1	0	0	0	0	1	0
V	0	2	-1	-1	0	0	1

GitHub: http://linsalrob.github.io/PyFBA PyPI: https://pypi.python.org/pypi/PyFBA

Contact presenter: dcuevas08@gmail.com