

Introduction

Current bacterial models are built from gene annotations, where gene function is deduced through homology-based algorithms and tools, such as RAST (Rapid Annotation using Subsystem Technology)

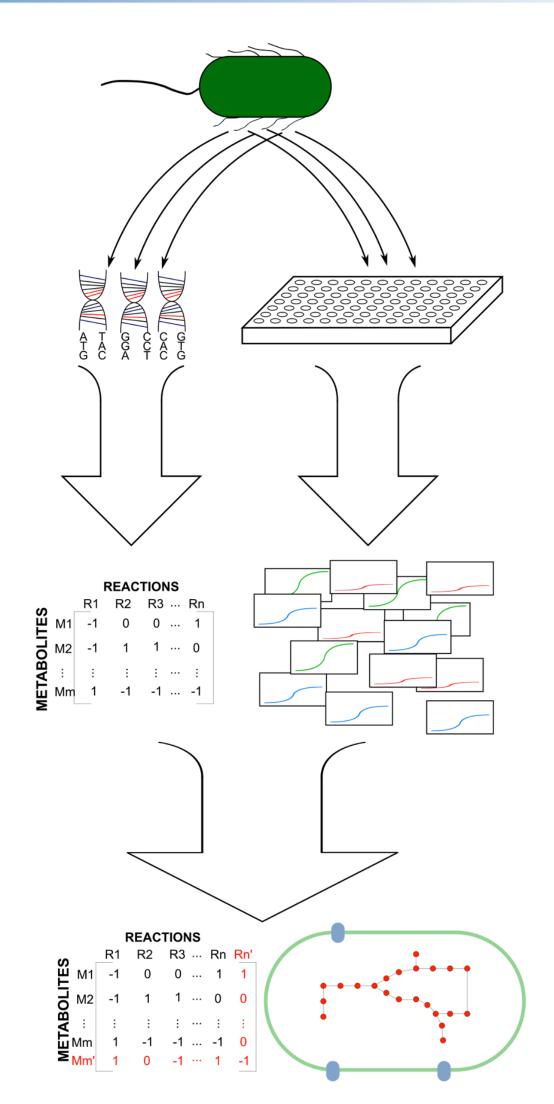
Novel functional roles are left undiscovered when they cannot be extrapolated from current annotation software

Using flux-balance analysis (**FBA**) software, metabolic models can be used for *in silico* prediction of growth rates and biomass yield upon a variety of growth conditions

Recent developments using multiphenotype assay plates (**MAPs**) provide a high-throughput technique for profiling bacterial phenotypes upon a variety of growth conditions

Coupling PM experiments with FBA software, metabolic models can be reconciled and optimized to best predict bacteria response and yield

Experimental Design



tabolism of Aromatic Compou

tors, Vitamins, Prosthetic Groups, Pigme

Figure 2. Genomic annotations. Next-generation sequencing platforms are used to sequence the Citrobacter sedlakii genome. Sequences are uploaded to RAST to obtain gene function annotations.

Mass Balance Equation Determine flux values where S * v = 0

Flux Balance Analysis Does a solution exists where we can maximize the production of a specific substrate?

Figure 4. Constraint-based model. KBase supplies the framework where a metabolic model can be imported as a stoichiometric matrix of metabolites and reactions. Included in the model are several constraints including thermodynamics, reaction flux rate, and mass balancing. Linear programming maximizes biomass production to answer the question: does the model predict growth?

Phenotyping Diverse Bacteria for Metabolic Network Reconstruction

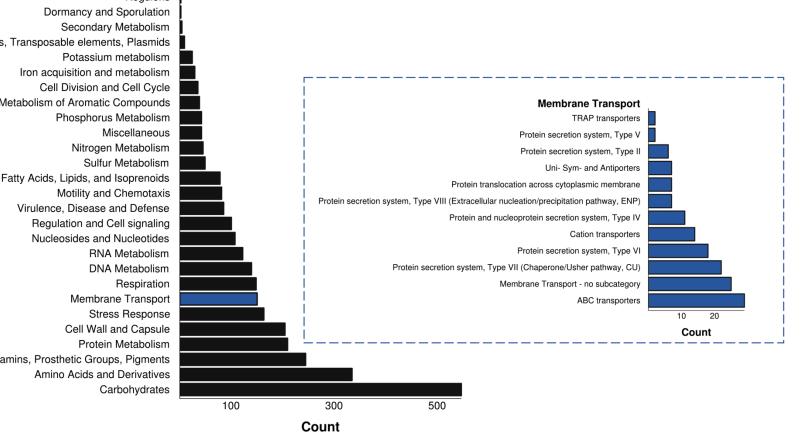
Daniel A Cuevas¹, Heqiao Liu², Tucker Lopez³, Blaire Robinson⁴, Kristen Aguinaldo³, Chris Henry⁵, Elizabeth Dinsdale³, and Robert A Edwards^{1,2,3,4,5}

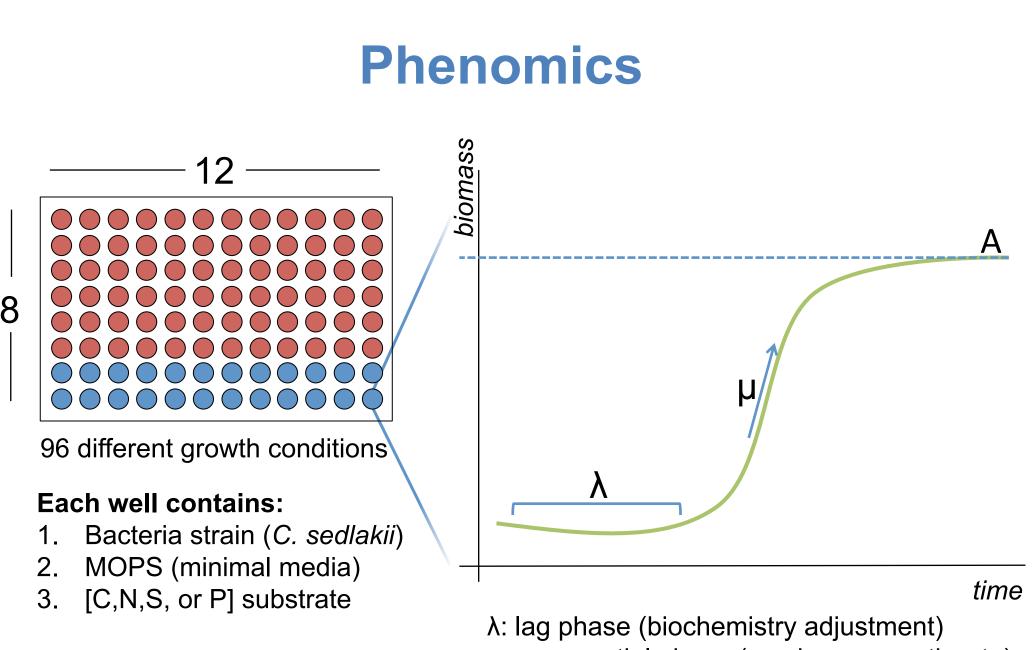
¹Computational Science Research Center, ²Department of Computer Science, ³Department of Biology, ⁴Biological and Medical Informatics Research Center, San Diego State University, CA; ⁵Argonne National Lab, IL

Methods

RAST Gene Annotations Membrane Transport | K, S, P, N Metabolism

Polyamine Synthesis and Degradation | Respiration





Growth curve model

Figure 3. Modeling growth curves. Bacteria are grown on 96well plates over time. OD 600nm is recorded to produce growth curves. Model parameters are automatically determined using an optimization method to produce a best fit logistic curve. Growth is computed based on model parameters.

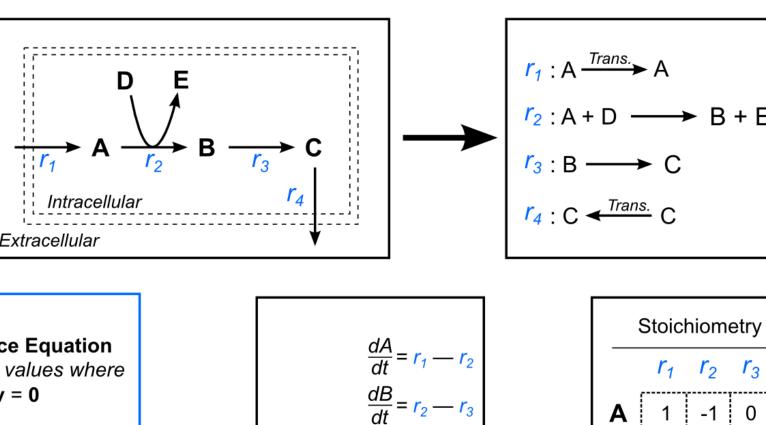
Genome-Scale Metabolic Modeling

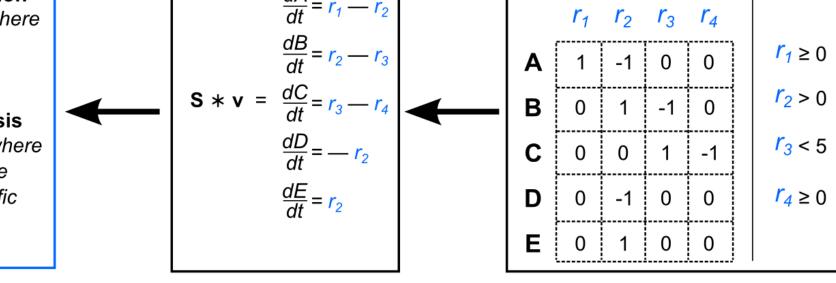
KBase Features

Import model | FBA | MAP simulation | Gap-fill (+ reactions) View model | Inspect pathways | Gap-gen (- reactions)

Flux (v)

Stoichiometry (S)





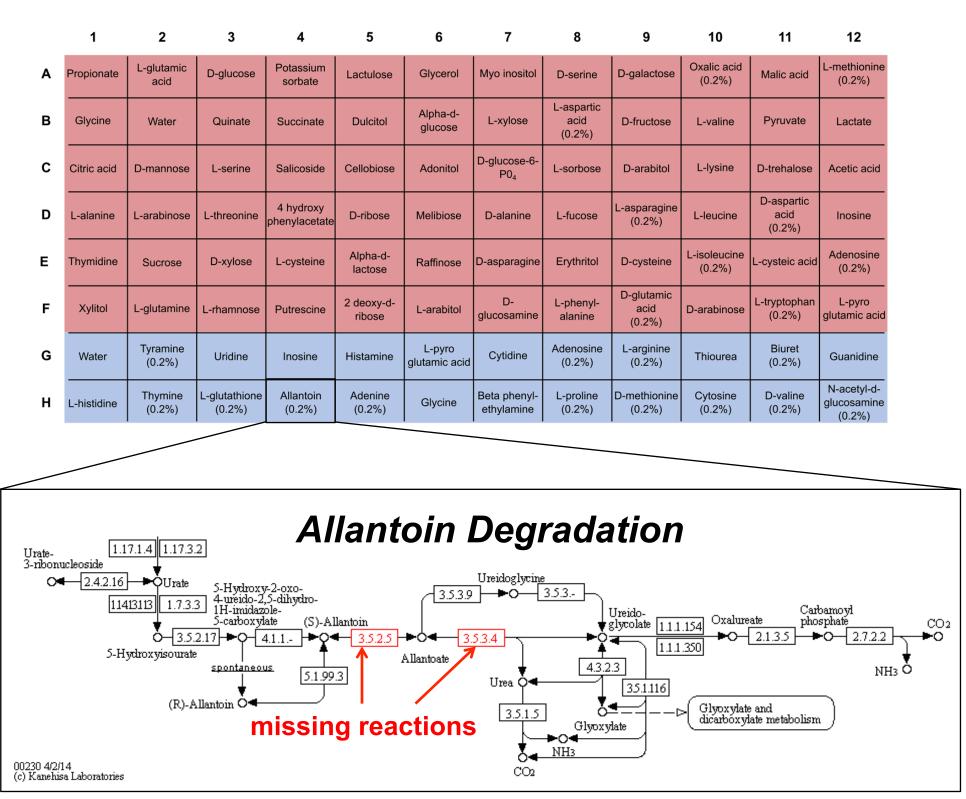
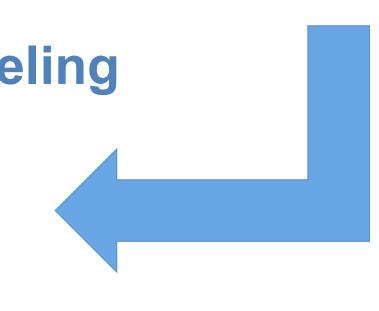


Figure 5. Gap-filling. Given a model that incorrectly predicts no growth, Kbase includes the capability to identify reaction gaps in the model that allow the bacterial model to correctly exhibit growth. Above is an example of two missing reactions in the C. sedlakii model involved in the allantoin degradation pathway.

μ: exponential phase (maximum growth rate) A: stationary phase (final biomass yield)

$$\hat{y} = y_1 + \frac{A - y_1}{1 + \exp\left[\left(\frac{\mu_{max}}{A}\right)\left(\lambda - t_i\right)\right] + 2}$$



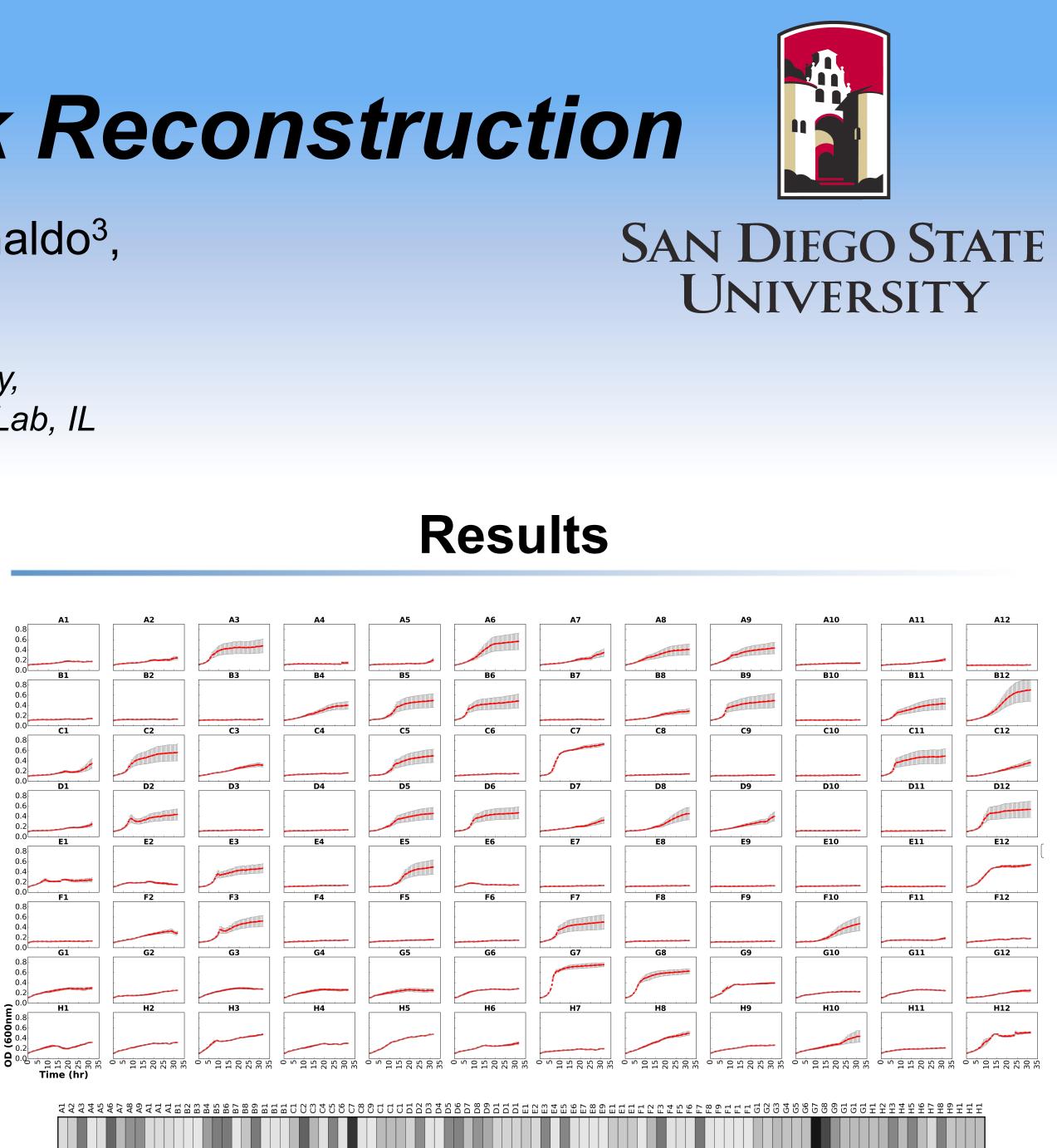


Figure 6. *C. sedlakii* growth curves. The automated analysis pipeline creates growth curve plots with standard error bars. Growth levels are quickly assessed in the grey-scale bar.

 Table 1. A comparison between experimental results and FBA
prediction. After using gap-filling on KBase, 84 cases (93%) were in agreement with the MAPs results. 6 cases did not match the MAPs experiments.

Why were these reactions missing from model?

Continue to model, sequence, and assay a broad and diverse set of bacteria – can we improve annotations?

Additional Information

https://vdm.sdsu.edu/pmanalyzer https://edwards.sdsu.edu/dbbp

Funding by NSF: (DEB-1046413) (CNS-1305112) (MCB-1330800) (DUE-1259951)

no growth growth

		FBA Prediction	
		G	NG
pic	G	48	0
sult	NG	6	36

# of Bacteria				
Sequenced	22			
MAPs	49			

Table 2. Current data collection.

Questions

