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Figure 4. KBase Modeling Software. KBase supplies online tools and features (left) where a metabolic model can be imported and used in
Figure 1. Analysis Overview. Combine genomics and phenomics FBA, growth predictions, PM simulations, and other modeling procedures (bottom). KBase includes methods to view model reaction Increase number of growth conditions and bacteria
in order to create, test, and reconcile bacteria metabolic models. composition and biochemical pathways (right). strains
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