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Introduction 

Current bacterial models are built from gene 
annotations, where gene function is deduced through 
homology-based algorithms and software, such as 
RAST (Rapid Annotation using Subsystem 
Technology) 
 

Novel functional roles are left undiscovered when they 
cannot be extrapolated from current annotation 
software 
 

Using flux-balance analysis (FBA) software, metabolic 
models can be used for in silico prediction of growth 
rates and biomass yield upon a variety of growth 
conditions 
 

Recent developments using phenotype microarrays 
(PMs) provide a high-throughput, large-scale 
technique for profiling bacterial phenotypes upon a 
variety of growth conditions 
 

Citrobacter sedlakii genome was sequenced using 
next-gen sequencing and assayed on PMs 
 

Coupling PM experiments with FBA software, 
metabolic models can be reconciled and optimized to 
best predict bacteria response and yield 

Methods Results 

Conclusion 

Model optimization for over 90 growth conditions can 
be completed quickly 
 

Gapfilling still requires manual execution (run for each 
growth condition) 
 

Why were these genes missing from model? 
 

Increase number of growth conditions and bacteria 
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Figure 1.  Analysis Overview.  Combine genomics and phenomics 
in order to create, test, and reconcile bacteria metabolic models. 

Phenotype MicroArray Genomics 

Each well contains: 
1.  Bacteria strain (C. sedlakii) 
2.  MOPS (minimal media) 
3.  [C,N,S, or P] substrate 

Figure 2.  Process Growth Curves.  96 
well plates are run on instrument (right) 
for 32hrs. OD600nm is recorded every 
30mins to produce growth curve (above). 
Parameters are captured to fit to a 
logistic model, which is then used to 
determine growth level. 

Figure 3.  Metabolic 
Models.  Next-generation 
sequencing platforms are 
used to sequence the C. 
sedlakii genome. 
Sequences are uploaded 
to RAST to obtain gene 
function annotations. 

Flux-Balance Analysis 

Citrobacter sedlakii 
Size 4,604,104 bp 

Contigs 320 

Subsystems 
Total 

Subsystems 536 

Hypothetical 
Proteins 811 (19%) 

KBase Features 
Import model  |  FBA  |  PM simulation  |  Gapfill (+ reactions) 

View model  |  Inspect pathways  |  Gapgen (- reactions)  

Figure 4.  KBase Modeling Software.  KBase supplies online tools and features (left) where a metabolic model can be imported and used in 
FBA, growth predictions, PM simulations, and other modeling procedures (bottom). KBase includes methods to view model reaction 
composition and biochemical pathways (right). 

Figure 5.  C. sedlakii Growth Curves.  A logistic model is fitted to the 
growth curve to extract phenotype parameters. Red boxes highlight 
the 10 cases where FBA predicted growth and PM modeling resulted 
in no growth. The letter preceding the substrate name identifies it as a 
carbon or nitrogen source. 

Growth No Growth 

G 44 0 
NG 10 36 

FBA Prediction 

PM 
Experiment 

Table 1.  A comparison between experimental results and FBA 
prediction. After using gapfilling on KBase, 80 cases (89%) were in 
agreement with the PM results. 10 cases did not match the PM 
experiments. 

Before Gapfilling 
1,367 reactions 

After Gapfilling 
1,399 reactions 

32 reactions total added to model 
13 out of 32 are metabolite transporters 
12 existing reactions made reversible 
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λ: lag phase (biochemistry adjustment) 
µ: exponential phase (maximum growth rate) 
A: stationary phase (final biomass yield) 


